You are currently viewing Everstream Analytics secures new cash to predict supply chain disruptions – TechCrunch

Everstream Analytics secures new cash to predict supply chain disruptions – TechCrunch


Everstream Analytics, a supply chain insights and risk analytics startup, today announced that it raised $24 million in a Series A round led by Morgan Stanley Investment Management with participation from Columbia Capital, StepStone Group, and DHL. CEO Julie Gerdeman said that the new money would be used to “propel technology innovation” and “further global expansion.”

Everstream, which was launched as Resilience360 and Riskpulse, provides predictive insights for supply chains. Drawing on billions of supply chain interactions, the company applies AI to assess materials, suppliers, and facilities for risk.

Plenty of startups claim to do this, including Backbone, Altana, and Craft. Project44 recently raised $202 million to expand its own set of predictive analytics tools, including estimated time of arrivals for shipments.

But what sets Everstream apart is its access to proprietary data that goes beyond what competitors are leveraging, according to Gerdeman.

“[Everstream provides] visibility into essentially every network, component, ingredient, ​and raw material around the world,” she told TC via email. “Connected business networks, scalable computing power, graph data base technology, and advances in AI algorithms enable Everstream to combine massive volumes of public and proprietary data to build a model of the global supply chain.”

As new data enters the platform, Everstream, which integrates with existing enterprise resource planning systems, retrains its AI system to reflect the current supply chain environment. Customers receive proactive warnings based on signals including financial reports and news of weather events, environmental and sustainability risks, and natural disasters.

For example, Everstream can warn businesses when it might be difficult to source a specific material and how likely customers are to cancel, increase, or move forward orders. It can also provide suggestions for optimizing logistics operations based on metrics such as timeliness, quality, and cost of goods shipped.

“Everstream’s AI-based models and preset dynamic thresholds can be used to predict disruptions and prescribe recommendations to mitigate risk and deliver better results to the business needs,” Gerdeman added. “[Everstream] identifies the most impactful risks in the network and creates targeted insights-based on inputs from the … platform, including incident monitoring, predictive risks, ESG, and shipment data — slashing time, cost, and complexity.”

Most would argue these are useful tools at a time when uncertainty continues to dog the supply chain — assuming Everstream’s AI systems perform as well as advertised. While some surveys show tepid adoption of predictive analytics among the supply chain industry, Gartner recently found that 87% of supply chain professionals plan to invest in “resilience” within the next two years, including automation and AI.

Investors seemingly see the potential. Last year was a banner year for venture-backed supply chain management companies, which saw $11.3 billion in funding, according to Crunchbase.

For its part, Everstream claims its customer base has grown 550% to date in 2022 and now includes brands like AB InBev, Google, Bayer, Schneider Electric, Unilever, and Whirlpool. Mum’s the word on concrete revenue numbers; Gerdeman demurred when asked about them.

“The pandemic has illustrated why deep visibility is needed not only into a company’s network, but down to the component, ingredient, ​and raw material level, because it doesn’t matter if the company’s supplier is operational if their suppliers are not,” Gerdeman said. “Everstream’s insights are not only predictive in nature, but they are also prescriptive – meaning we not only tell clients what’s coming next, but also what they should do about it.”

Everstream, which employs 100 people, has raised $70 million in equity and debt funding so far.



Source link

Leave a Reply